加入收藏 | 设为首页 |  联系我们
合肥短信群发
合肥语音短信

Our Customer客户案例

Contact us联系我们

联系人:韦经理

电话:0551-63687570

手机:15905695106,13966731013

传真:0551-63687570

E-mail:593169945@qq.com

QQ:593169945

地址:合肥市包河区 - 马鞍山南路铂金汉宫8#1713

网址:http://www.ahduanxin.com/

more>>新闻中心

隐蔽的尺寸

发布者:博韬教育 日期:2012/2/5 1 点击次:717

 在城市广场的中央有一片很大的圆形憩息地。市议会拟在该地建造一个菱形浅水池。多里斯。莱特市长看到这一计划,她找来了建筑师。莱特市长:“我喜欢呈菱形的水池,用红瓷砖砌成,不知道这水池的每边有多长?”建筑师弗兰克。劳埃德。朗被问住了。朗先生:“从A至B是5米,从B至C是4米。唔,应求出BD。也许我需要应用毕达格拉斯定理。朗先生正疑惑不解,市长阁下忽然叫起来。莱特市长:“啊哈!水池每边长为9米,这是毫无疑问的。”                          芜湖  博韬教育

  朗先生:“我的天哪!怪不得你姓莱特(Wright)我姓朗(Wrong)呢。”有了什么好主意使这个问题迎刃而解?

  

  既是对角线又是半径

  莱特夫人忽然悟到水池每边即为矩形的对角线。这个矩形的另一条对角线就是圆形栖息地的半径。而矩形的两条对角线是相等的,所以水池每边边长就是圆半径的长度。半径是5+4=9米,因此水池每边也是9米,无需应用毕达格拉斯定理。

  你再找一种更简便的方法试试看,这样你就更能体会我们这种解法的优点。如果你仅应用毕达格拉斯定理和相似三角形,其解法一定很冗长,繁琐。但你如果想到下列平面几何定理:一个圆的两条内部相交的弦,一条弦的两部分之积等于另一根弦两部分之积,那么就可以得出稍微简短的解法。根据这一定理,可以求得直角三角形的高为√56,在应用毕达格拉斯定理,算出直角三角形的斜边为9。

  有一个与此密切相关的问题,那就是诗人亨利。朗非罗在其小说《卡瓦诺》中所提出的有名的水仙花问题。当水仙花花茎垂直时,花朵伸出水面10厘米。如果把水仙花拉向一边,使花茎保持直线,花朵沾水的位置离原来的位置是21厘米,问水深多少厘米?

  

  要解这个问题,可以先画一张草图,此图与水池问题的图相似。我们要确定的就是x的长度。与水池问题一样,这个问题也不止一种解法。若你还记得两弦相交的定理,解这个问题是轻而易举的。

  还有一个有趣的游泳池难题,灵机一动则迎刃而解。一条海豚位于一个圆形水池的西边A点,它笔直地游了12米,鼻子触到水边的B点,转过身后,又笔直地游了5米,到达水池边上的C点,此位置正好与水池边上的A点遥遥相对,试问如果它直接从A点游向C点,需要游多长距离?

  啊哈!要解决这个问题只需知道下列定理:半圆上的圆周角是直角,所以三角形ABC是直角三角形。已知两直角边长分别为12米和5米,所以斜边为13米。上述问题都给我们以启示:在许多情况下,如果思路正确,几何问题的求解会变得极其容易。而要做到这一点,这取决于你是否想到了欧几里德几何的某个基本定理。

芜湖  博韬教育

普迅通传媒 版权所有

电话:0551-63687570 手机:15905695106,13966731013 传真:0551-63687570 地址:合肥市包河区 - 马鞍山南路铂金汉宫8#1713